Transformer模型详解(图解最完整版) - 知乎 (zhihu.com)
结构
Transformer 由 Encoder 和 Decoder 两个部分组成,Encoder 和 Decoder 都包含 6 个 block。Transformer 的工作流程大体如下:
获取输入句子的每一个单词的表示向量 X,X由单词的 Embedding(Embedding就是从原始数据提取出来的Feature) 和单词位置的 Embedding 相加得到。(词嵌入和词位置的嵌入)
每一个 Encoder block 输出的矩阵维度与输入完全一致。输入过6个encoder block,维度不变
将 Encoder 输出的编码信息矩阵 C传递到 Decoder 中,Decoder 依次会根据当前翻译过的单词 1~ i 翻译下一个单词 i+1,如下图所示。在使用的过程中,翻译到单词 i+1 的时候需要通过 Mask (掩盖) 操作遮盖住 i+1 之后的单词。
单词的 Embedding 有很多种方式可以获取,例如可以采用 Word2Vec、Glove 等算法预训练得到,也可以在 Transformer 中训练得到。
Transformer 中除了单词的 Embedding,还需要使用位置 Embedding 表示单词出现在句子中的位置。**因为 Transformer 不采用 RNN 的结构,而是使用全局信息,不能利用单词的顺序信息,而这部分信息对于 NLP 来说非常重要。**所以 Transformer 中使用位置 Embedding 保存单词在序列中的相对或绝对位置。
Position Embedding(PE) 可以通过训练得到,也可以使用某种公式计算得到。在 Transformer 中采用了后者,计算公式如下:(为啥这么算捏)